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Abstract. We have investigated the attractive Hubbard model in the low-density limit for the
2D square lattice using the ladder approximation for the vertex function in a self-consistent,
conserving formulation. In the parameter region where the on-site attraction is of the order of
the bandwidth, we found no evidence of a pseudo-gap. Furthermore, we have observed that the
suppression of the Fermi surface known to destroy superconductivity in one and two dimensions,
when these systems are treated using a non-self-consistent theory (Schmitt-Rink, Varma C M
and Ruckenstein A E 1989Phys. Rev. Lett.63 445), does not occur when pair–pair interactions
are included. However, we do find a quasi-particle lifetime that varies linearly with temperature,
which is similar to the findings from many experiments. Thus, although this system has a Fermi
surface, it shows non-Fermi-liquid-type behaviour over a wide temperature range. We stress
that our work uses thermal Green’s functions along the real-time axis, and thus allows for a
more accurate determination of the dynamical properties of a model than theories that require
extrapolations from the imaginary-frequency axis.

1. Introduction

The high-temperature superconductors show remarkable deviations from Fermi-liquid
behaviour in their normal state aboveTc, the superconducting transition temperature.
Although this seems to be experimentally well established, no consistent microscopic
theoretical explanation has been found.

There are a number of major differences from usual metallic (BCS-type) superconductors
on which we concentrate to achieve a theoretical understanding. The first one is the low
dimensionality. For example, the normal-state conductivity mainly takes place in the two-
dimensional (d dimensions will be denoted bydD throughout this paper) copper oxide
planes. The second difference is the extremely short coherence length of the Cooper pairs
in the superconducting state. These are known to be of the order of 20Å (3–4 lattice
constants), and therefore much smaller than in usual superconductors (∼1000Å). This fact,
together with the extremely low (‘bad metals’) quasi-particle density leads to pairs which are
barely overlapping (∼10−2 pairs/coherence volume) with each other. Such arguments were
first stated in detail by Randeria [1] who investigated conditions for a crossover between
superconductivity and Bose condensation of pairs of electrons. The small overlap is claimed
to be related to a separation of a temperatureT ∗, at which pairing takes place, from the
temperatureTc, at which phase coherence and therefore superconductivity is established. In
contrast to this, usual superconductors have∼106 pairs/coherence volume, which is believed
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to be why pairing and phase coherence take place at the same temperature, the mean-field
Tc. Another unusual property of the cuprate superconductors is the linear resistivity in
the normal state of the optimally doped materials. An ideal Fermi liquid should show
a resistivity caused by electron–electron scattering near the Fermi surface which varies
quadratically with the temperature. On the other hand, a crossover to a linear resistivity
due to phonons is expected to take place at much higher temperatures, above the Debye
temperature.

Finally, one last observation that we wish to focus on is the presence of a pseudo-gap.
This feature was first observed with NMR [2–4] by measuring the spin–lattice relaxation
rate for the65Cu nucleus. The relaxation rate, 1/(T1T ), which is temperature independent in
normal metals, decreases strongly with decreasingT even aboveTc for the high-Tc cuprates.
The pseudo-gap has also been measured by optical experiments where it is found in the
temperature dependence of the scattering time obtained from a generalized Drude theory for
optical conductivity data [5, 6]. The momentum dependence of the pseudo-gap has been
investigated with recent ARPES experiments, and it is found to be present mainly along the
(k, 0) direction, consistently with the proposed d-wave symmetry of the superconducting
order parameter. It has also been observed by tunnelling (STM) [7] measurements. At
present, there is ongoing discussion addressing the notion that the gap can be related to pair
formation, or other possible precursor phenomena of superconductivity, which takes place
at temperatures above that at which macroscopic phase coherence is established.

The above-mentioned ideas have led us to consider a simple model system in 2D which
can describe short-coherence-length pairs which might exist as preformed pairs aboveTc.
This model, the attractive Hubbard model, for on-site, s-wave pairing only, allows us to
focus on many of the above-mentioned properties. In particular, we have examined the
dynamical properties of this model to see whether the attractive Hubbard model in 2D
possesses a pseudo-gap. Furthermore, we have examined the temperature dependence of
the imaginary part of the single-particle self-energy to learn how the scattering rate behaves.

We have focused on this model in the low-density limit. When studied in the limit of
low band filling, the attractive Hubbard model represents a system with low quasi-particle
densities, and therefore the weakly overlapping pairs proposed to characterize the cuprate
superconductors are a natural consequence of this problem. An approximation which works
well in the dilute limit is the ladder approximation; this formalism accounts for all possible
scattering events for particles that can occur in the particle–particle channel (only particle–
hole scatterings are ignored).

In a simple and elegant paper [8], Schmitt-Rinket al studied such model systems
and concluded, at least in a non-self-consistent treatment of such problems, that in 2D a
stable, two-particle, bound state persists down toT = 0, and this leads to aT = 0 Bose
condensation of composite bosons (two fermions pair to form a boson). The physics of this
phenomenon is that the appearance of preformed pairs leads to the elimination of the Fermi
surface (there are no fermions left), and therefore superconductivity is suppressed in favour
of T = 0 Bose condensation.

The consequence of this work for the model system under consideration is as follows: in
a non-self-consistent treatment of the attractive Hubbard model at low densities, employing
the ladder approximation, the system is always unstable towardsT = 0 Bose condensation
of preformed pairs into an infinite-lifetime, two-particle, bound state [8]. One of the focuses
of this paper, and a second motivating force behind our study, is the wish to test whether
this idea survives when the theory is solved in a fully self-consistent fashion. That is,
when one includes interactions between pairs, does the physics of reference [8] survive? A
careful and detailed study of the interaction between pairs was given by Haussmann [9, 10],
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and here we will consider these ideas as applied to the observed normal-state anomalies,
including the formation of a pseudo-gap, and to the physics of reference [8].

The numerical work of Haussmann for 3D suggests that the physics of this problem is
very different to that of its non-self-consistent counterpart. In particular, he suggests that
the bound state strongly hybridizes with the two-particle scattering continuum, and that this
greatly reduces the likelihood of the appearance of preformed pairs. Such a tendency has
also been suggested by the work of several other authors. Fresard and co-workers [11] found
for 2D, by applying the self-consistent ladder approximation, that in the low-doping regime
the Fermi-liquid properties are fully recovered and that only in the strong coupling regime
can deviations from Fermi-liquid behaviour be expected. Micnaset al [12] found among
other results that Fermi-liquid properties recover in a self-consistent calculation. (The work
of these authors differs from our own work in that they use a very different method to
obtain the dynamical properties of this model in this approximation.) Also, Singeret al
[13] employed quantum Monte Carlo methods and concluded that the two-particle bound
state, which they refer to as a ‘band of pairs’, is strongly overlapping with the one-particle
continuum, and only at very large attractive interactions does it become well separated from
the one-particle continuum. Lastly, recent analytical work by Kaganet al [14] shows that
when pair–pair interactions are included in aT = 0 calculation, in the dilute limit the gap
between the two-particle bound state and the one-particle continuum starts to close.

Our results are consistent with the above-stated trends, and we do not find that the
physics of reference [8] survives when pair–pair interactions are included. Furthermore, we
find no evidence of a pseudo-gap. We have used double-time Green’s functions to study
this system atT > 0, and thus, unlike in other studies that examined this system using
imaginary times (the conventional Matsubara frequency formulation), in which the authors
had to rely on Pad́e approximants or maximum-entropy techniques, we are able to examine
the dynamical properties of this system directly. Thus, we believe that we have a somewhat
more reliable representation of the dynamics of this system.

We organize our paper as follows. In section 2 we introduce the model and describe
different levels of approximation which can be used for the ladder approximation. In the next
section we introduce ak-averaged method along with a generalized spectral representation
of all temperature-dependent Green’s functions which enables us to obtain results in a fully
self-consistent calculation along the real-time axis. In section 3.2 we present numerical
evidence that aids in justifying these approximations. Our main results are presented in
section 4, and in section 5 we present our conclusions.

2. The model

The model Hamiltonian which we consider is the attractive (negative-U ) Hubbard model,
given by

H = −t
∑
〈ij〉,σ

(c
†
i,σ cj,σ + HC)− |U |

∑
i

ni,↑ni,↓ (1)

where t is the transfer integral connecting neighbouring lattice sitesi, j , the c†i,σ , ci,σ are
electronic creation, annihilation operators, respectively, and|U | is the strength of the on-site
attractive interaction between two electrons occupying the same lattice site. Throughout this
paper we restrict our attention tod-dimensional hypercubic lattices.

For completeness, we begin by reviewing the well studied ladder approximation to the
Bethe–Salpeter equation [16, 9]. The Dyson equation which has to be solved to obtain
the full one-particle Green’s function contains a large number of complicated diagrams and
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cannot be solved exactly. However, in the ladder approximation, which accounts for all
possible scattering events for particles that can occur in the particle–particle channel (only
particle–hole scatterings are ignored), one can find a solution for the single-particle self-
energy. The ladder approximation can be motivated in the dilute limit by takingkF a, the
Fermi momentum multiplied by the scattering length (which in 3D is given by

a = m|U |L3

4πh̄2

which is the effective range of the attractive potential) as an additional small parameter.
This is so because all diagrams which include more than one hole propagator (crossing
diagrams) are neglected, and therefore this approximation is valid in the low-density limit.
The repeated scattering enters the equation through the vertex function0(K, i�n), and since
the interaction|U | is constant, the Bethe–Salpeter equation which determines0(K, i�n)
becomes exactly solvable.
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Figure 1. A diagrammatic representation of equation (3). The vertex function0 contains the
repeated scattering of two particles.

To display this solution we introduce the pair susceptibility,χ(K, i�n), given by

χ(K, i�n) = − 1

Nβ

∑
m,k

G(K − k, i�n − iωm)G(k, iωm) (2)

whereG(k, iωm) is the one-particle thermal Green’s function. Note that the sign of this
function is chosen differently by different authors, and readers should take note of the
consequence of this sign choice in future equations. Then, we can express the solution for
the vertex function as

0̃(K, i�n) = −|U |/(1+ |U |χ(K, i�n)) (3)

which is shown diagrammatically in figure 1.
In our work we have chosen to subtract the interaction strength from0̃ to obtain an

analytic function0(K, z) with properties appropriate for examination by a generalized
Kramers–Kroning analysis (this is equivalent to subtracting the Hartree potential from the
self-energy), and thus introduce

0(K, i�n) = 0̃(K, i�n)− (−|U |) = U2χ(K, i�n)

1+ |U |χ(K, i�n)
. (4)

From now on, we shall only refer to0.
The criterion which determines a breakdown of the normal state due to superconducting

pair formation with decreasing temperature is known as the Thouless criterion [17]. We have
examined this condition in detail, and will report on our results elsewhere [30]. Here, we
simply remark that the Thouless condition is associated with the occurrence of a two-particle
bound state (with infinite lifetime) at the chemical potential, and is signified by

1+ |U |χ(K = 0, z = 0) = 0. (5)
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This equation, and the associated normal-state properties, can be examined in a variety
of increasingly more accurate approximations, and we review these approximations before
proceeding to our results.

2.1. Non-self-consistent, non-conserving theory

The self-energy in this case (from now on denoted by NSCNC) is given by

60(k, iωn) = 1

Nβ

∑
m,q

00(k + q, iωm + iωn)G
0(q, iωm). (6)

The superscript 0 indicates the use of free Green’s functions. The full Green’s function in
this approximation is

G(k, iωn) = G0(k, iωn)+G0(k, iωn)6
0(k, iωn)G

0(k, iωn). (7)

Most importantly, Schmitt-Rinket al [8] have used this level of approximation and
have shown that for any 2D system with an attractive interaction the system is unstable
against the effective emptying of the Fermi ‘circle’ into the two-particle bound state. Then,
a condensation atT = 0 of these non-interacting composite bosons takes place. While
there has been some criticism of this simple and elegant idea [1], we believe that for any
non-self-consistent theory the ideas of reference [8] are solid. What happens when one
includes self-consistency, namely when one includes pair interactions, is one of the focuses
of this paper. Furthermore, unlike the authors of reference [1], we believe that it is more
appropriate to assess the credibility of the ideas of reference [8] using the same kind of
formalism.

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

= +

Figure 2. A diagram for the single-particle Green’s function (solid line) in the non-self-
consistent, conserving approximation (NSCC). The thin solid lines represent the non-interacting
Green’s function.

2.2. Non-self-consistent, conserving theory

We are studying a lattice model which has particle–hole symmetry. Unfortunately, the
NSCNC approximation violates this symmetry. It can be restored if instead of equation (7)
for the Green’s function we use

G(k, iωn) = (G0(k, iωn)
−1−60(k, iωn))

−1. (8)

The diagram for the full Green’s function is shown in figure 2 and from now on we refer
to this level of approximation as NSCC.

It was suggested by Serene [18] that the inclusion of these new diagrams fundamentally
changes the physics of reference [8]. At least for the attractive Hubbard model, we do not
agree with this claim, and instead find that the physics of reference [8] is still correct and,
in fact, is greatly simplified when one uses a NSCC approximation.
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Figure 3. A diagram for the single-particle Green’s function in the self-consistent, conserving
(SCC) approximation, with the same notation as figures 1 and 2.

2.3. Self-consistent, conserving theory

One may treat the ladder approximation fully self-consistently by calculating the self-energy
using the full interacting Green’s function. That is, one solves for

6(k, iωn) = 1

Nβ

∑
m,q

0(k + q, iωm + iωn)G(q, iωm) (9)

G(k, iωn) = (G0(k, iωn)
−1−6(k, iωn))

−1. (10)

Equation (10) is shown diagrammatically in figure 3, and from now on we refer to this level
of approximation as SCC. (Note that we find that nothing new is learned when one examines
the self-consistent, non-conserving level of approximation, and in this paper we ignore such
equations.) The significant achievement of a self-consistent calculation is the inclusion of
pair–pair interactions, as was stated previously by Haussmann [9]; unlike Haussmann, who
studied a 3D continuous system, here we study a 2D lattice system, and are thus able to
give a critique of the physics of reference [8].

Equations (2), (4), (9) and (10) have to be solved in an iterative way until self-
consistency is achieved. Our procedure for accomplishing this, along the real-time axis,
is discussed in the next section.

3. Calculation procedure

3.1. Formalism

In this section we outline how we solved the self-consistency problem in ourk-
averaged approximation. Also, we have employed another approximation in the spectral
representations for certain functions, and here we make this approach clear. Lastly, as
was mentioned earlier, our work on this problem involves the real-frequency formulation
of the thermal Green’s functions. This formulation follows naturally from the analyticity
of the retarded (and advanced) Green’s function which is, e.g., explained in the work of
Zubarev [19], and we refer the reader to this reference for further details. The work in this
section makes clear the relationship between this formalism and the Matsubara frequency
formalism.

In order to solve for the non-self-consistent version of the ladder approximation, in either
conserving or non-conserving theories, one uses the lattice Green’s function to evaluate the
pair susceptibility. The susceptibility is used to calculate the vertex, from which one can
evaluate the self-energy. In order to solve for these equations self-consistently, one uses
the self-energy to evaluate a new approximation for the Green’s function, and repeats the
above process until the resulting Green’s function converges.

In our k-averaged approximation, we require only the momentum-averaged pair
susceptibility; thus, only the momentum-averaged Green’s function is required. That is,
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denoting thek-averaged quantities by overlined quantities:

χ(i�n) ≡ 1

N

∑
K

χ(K, i�n) (11)

or

χ(i�n) = − 1

β

∑
m

G(i�n − iωm)G(iωm). (12)

As a computational approximation, we use a spectral representation for thek-averaged
functions: they are approximated by a number ofδ-functions (typically several hundred)
along the real axis. Theseδ-functions were placed in such a fashion that they are
exponentially dense around the chemical potential (with a spacing1E � kBT ) and around
the lower band edge. The advantage of this representation is that all frequency summations
appearing in ourk-averaged approximation can be done analytically.

According to our spectral representation, the averaged one-particle Green’s function
reads as follows:

G
m̃
(iωn) = 1

π

∫
A(ω)

iωn − ω dω ≈
N(m̃)∑
j

am̃j

iωn − bm̃j
. (13)

To express the Green’s function in terms of a series of poles along the real axis, where
to every frequency can belong a superposition of different degenerate energy levels, is
usually called the Lehmann representation [20, 21]. In this way we also understand our
approximation above.

The functionA(ω) is the imaginary part of the (retarded) one-particle Green’s function
along the real axis [19, 22]. The superscript(m̃) in this and future quantities labels the
number of the iteration step as convergence to self-consistency is performed. Furthermore,
N(m̃) is the number ofδ-functions which were used,bm̃j is the position of eachδ-peak on

the real axis, andam̃j is the weight of this peak.
If we define the averaged Green’s function in this way, we can calculate analytically the

frequency summation which is needed to obtain the averaged pair susceptibilityχm̃(i�n):

χm̃(i�n) = −
N(m̃)∑
j,k

1

β

∑
m

am̃j

iωm − bm̃j
am̃k

i�n − iωm − bm̃k

=
N(m̃)∑
j,k

am̃j a
m̃
k

i�n − bm̃j − bm̃k

(
1

1+ e+βb
m̃
j

− 1

1+ e−βbm̃k

)

= 1

2

N(m̃)∑
j,k

am̃j a
m̃
k

i�n − bm̃j − bm̃k

(
tanh

(
βbm̃j

2

)
+ tanh

(
βbm̃k

2

))
(14)

which can be abbreviated as

χm̃(i�n) =
M(m̃)∑
k

cm̃k

i�n − dm̃k
(15)

and hence has an identical formal structure to thek-averaged Green’s function in our spectral
representation, but the spectral weights of the poles are now given bycm̃k at positionsdm̃k
along the real axis. Here

M(m̃) = N(m̃)(N(m̃)+ 1)

2
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is the new number of poles that are included in the representation for the pair susceptibility.

With χm̃(i�n) we can now calculate0
m̃
(i�n), which in our theory is given by

0(i�n) = 1

N

∑
K

0(K, i�n) ≈ U2χ(i�n)

(1+ |U |χ(i�n))
[

1+ U(χ2− χ2)

χ(1+ |U |χ) + · · ·
]
. (16)

We assume that the second term in the expansion, proportional to the mean squared
fluctuations of the pair susceptibility, and higher-order terms, can be neglected on the basis
of our knowledge that they should tend to zero in infinite spatial dimensions. In order to
obtain a spectral representation for0 we use partial fractions:

0
m̃
(i�n) = U2χm̃(i�n)

1− Uχm̃(i�n)

=
(
U2

M(m̃)∑
k

cm̃k

∏
l 6=k
(i�m − dm̃l )

)

×
(∏

k

(i�m − dm̃k )− U
M(m̃)∑
k

cm̃k

∏
l 6=k
(i�m − dm̃l )

)−1

=
M(m̃)∑
m

gm̃m

i�n − hm̃m
. (17)

The position of the poleshm̃m along the real axis is given by the zeros of the polynomial∏
k

(x − dm̃k )− U
M(m̃)∑
k

cm̃k

∏
l 6=k
(x − dm̃l ) = 0 (18)

which have to be determined numerically. The weight factorsgm̃m follow from the equation

gm̃m = U2
M(m̃)∑
k

cm̃k

∏
l 6=k
(hm̃m − dm̃l ). (19)

With the result for0, we obtain an equation for the spectral representation of6:

6
m̃
(iωn) =

M(m̃)∑
r

N(m̃)∑
s

1

β

∑
m

gm̃r

iωn + iωm − hm̃r
am̃s

iωm − bm̃s

=
M(m̃)∑
r

N(m̃)∑
s

gm̃r a
m̃
s

iωn − hm̃r + bm̃s

(
1

1+ eβbm̃s
− 1

1− eβhm̃r

)
. (20)

Again we can abbreviate this as

6
m̃
(iωn) =

N(m̃)M(m̃)∑
t

sm̃t

iωn − t m̃t
. (21)

To determine the equation forG in the next level of iteration we use partial fractions
again:

G
n+1
(iωn) =

N(0)∑
j

a0
j

iωn − b0
j −6

m̃
(iωn)

=
N(0)∑
i

[(
a0
i

∏
t

(iωn − t m̃t )
)/

(C(iωn)−D(iωn))
]

=
N(m̃+1)∑

i

an+1
i

iωn − bn+1
i

(22)
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where we used the abbreviations

C(iωn) = (iωn − b0
j )
∏
t

(iωn − t m̃t )

D(iωn) =
N(m̃)M(m̃)∑

t

sm̃t

∏
u6=t
(iωn − t m̃u ).

(23)

The polesbn+1
j for the spectral representation ofG

n+1
(iωn) are given by the zeros of the

polynomial

(iωn − b0
j )
∏
t

(iωn − t m̃t )−
N(m̃)M(m̃)∑

t

sm̃t

∏
u6=t
(iωn − t m̃u ) = 0 (24)

and the weight factorsan+1
j are obtained by inserting the results for the poles in equation (22).

By going through one loop of self-consistency in this equation, the number of poles is
increased fromN(m̃) to

N(0)N(m̃)M(m̃) = N(0)N(m̃)2(N(m̃)+ 1)/2.

To avoid the number ofδ-functions that we have to deal with exceeding the number that
we can handle numerically and to avoid divergences which can occur if two poles come
too close to each other, we apply two additional approximations. First, we unite two delta
peaks to a single one if their positions come closer to each other thanε(ω), whereε is
smallest at the chemical potential and at the lower band edge of the unperturbed system.
Second, we neglect a pole whose weight is smaller than a certain boundaryν(ω) which is
again smallest at the chemical potential. This has to be done in such a way that the loss of
spectral weight is distributed onto all other poles in order to fulfil the sum rules.

In this way we have solved equation (14) to equation (24) until a stable self-consistent
solution is obtained.N(0) is typically chosen to be around 20, and we end up withN(m̃max)

of the order of 300 and at no step of the calculation does the number of poles exceed 3000.
We can therefore do the whole self-consistency loop by calculating all quantitiesalong

the real axis. In order to show that this is indeed equivalent to the imaginary-axis
Matsubara frequency formalism, we show how one can calculate the particle number in
both formalisms. The expectation value of the particle number,〈n〉, can be calculated either
by summing over the poles along the imaginary axis or by summing over theδ-functions
along the real axis:

〈n〉 = 1

β

∞∑
`=−∞

G(iω`) = 1+ 2

β

∞∑
`=0

Re(G(iω`)) (25)

which can be expressed by using the spectral representation as an integration along the real
axis:

〈n〉 = lim
δ→0+

1

2π i

∮
eiδ

1+ eβz
G(z) dz

= lim
δ→0+

1

2π i

∮
eiδ

1+ eβz
1

π

∫ ∞
−∞

A(x)

z− x dx dz

= 1

π

∫ ∞
−∞

A(x)

1+ eβx
dx. (26)
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Figure 4. A schematic diagram of the dispersion of the two-particle bound state below the
non-interacting continuum of the susceptibilityχ(K,�) (shaded region) as it arises in a NSC
formulation, if the chemical potential is below the continuum. Thek-average approximation is
related to ignoring the dispersion of this band of states.

This can be reduced by approximating the spectral function as a sum ofδ-functions as was
done above:

A(x) ≈
N(m̃)∑
j

am̃j πδ(x − bm̃j ). (27)

Altogether, we can express the particle number with theseδ-functions:

〈n〉 ≈ 1

π

∫ ∞
−∞

1

1+ eβx

N(m̃)∑
j

am̃j πδ(x − bm̃j ) dx =
N(m̃)∑
j

am̃j

1+ eβb
m̃
j

. (28)

Note that the dimensionality of the system enters into this calculation as the shape ofG0,
whose imaginary part is the spectral function of the uncorrelated system. To obtain numerical
results we constructed the unperturbed Green functionG0 from a number (typically 20) of
δ-functions. Since the most important physics is happening at the chemical potential and
at the lower band edge, we choose the distance between theδ-peaks to be smallest at these
points. To make sure that the distance between twoδ-peaks is always smaller thankBT ,
at these points we made these distances exponentially small by sampling the points with a
tanh−1(βx) function around the chemical potential and around the lower band edge.

3.2. Justification of thek-averaged method

In the following we discuss limiting cases where thek-average approximation made in
equation (16) becomes manifestly justifiable.

This is the case for large temperatures since 1−〈nK/2+q〉− 〈nK/2−q〉, as the numerator
for the calculation ofχ , is small. Thereforeχ becomes small. Of course, this is simply the
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Figure 5. For a fixed chemical potential (µ = −0.9) the particle number is plotted as a function
of the temperature. All of the quantities are measured in units of half the bandwidth,W = 4t
for 1D, and a value of|U | = W is used. Thek-average method is compared with a numerical
summation on a finite lattice (60 sites) and for a finite number of Matsubara frequencies (150).
The two methods give essentially the same result. Note the logarithmic temperature scale.

uncorrelated limit (note that ak-dependence still survives in the Green’s function, since the
free Green’s function has such a dependence). The approximation also holds true trivially
for small bandwidth and becomes exact if the band can be approximated by aδ-function
(namely, in the atomic limit, for whicht −→ 0). In this case nok-dispersion is present in
the problem. Furthermore, the case with|U | = 0 is trivially correct.

For |U | not too large,0 is determined by the pole of the bound state atχ = 1/|U |,
which means that a weakly dispersive two-particle bound state is well separated from the
continuum. The dispersion becomes weaker for larger|U | since the effective transfer of a
pair is teff ∼ t2/U . So, in this case the average overk-space is also a good approximation,
since all we are doing is replacing the bound state below the continuum by its average.
This is shown schematically in figure 4.

Probably the most interesting limit is that of large spatial dimensions. It was argued by
Metzner and Vollhardt [15] that for a system with large dimensions thek-dispersion of the
self-energy vanishes, which in the end is very similar to what we do. Such an approximation
gives several results which are seemingly also valid in 2D and 3D; for a review, see [23].

The only case where we can carefully give a critique of the quality of our fully self-
consistent results found using ourk-averaged method is that of a 1D model system. Of
course, as we argued in relation to equation (16), in one dimension our results should be
least accurate due to large fluctuation effects. Therefore, such a comparison should be
viewed as an upper bound of the potential differences, and our method should work much
better in any higher dimension.

In the 1D case we can directly compare results obtained by ourk-averaged method (we
started with a density of statesA0(ω) = 1/(π

√
4t2− ω2) and 20 initialδ-functions) with

fully self-consistent calculations (obtained by summing over the Matsubara frequencies—
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we used 40 to 60 lattice points and 150 fermionic and 299 bosonic Matsubara frequencies).
Of course, for the latter calculation, in order to perform this comparison, we must restrict
consideration to and calculate quantities that are averaged over the Brillouin zone.

In figure 5 we have plotted the particle number as a function of the temperature for a
fixed chemical potential obtained from the fully self-consistent calculations. This was done
for the two entirely different calculational procedures. As one can see in this figure, we had
to use a logarithmic scale to show the differences between these two results. One curve is
obtained by applying thek-averaged method while the other curve is obtained taking into
account the fullk-dispersion and summing numerically over the Matsubara frequencies.
The two methods describe the same physics, which is different from the results obtained
from NSC calculations. That these curves agree so well, and the fact that we are able to
use ourk-averaged method to such low temperatures, is very encouraging.
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Figure 6. For three Matsubara frequencies ({0, 2π/β, 4π/β}) and for the same 1D system the
susceptibilityχ is compared as a function of temperature. The two different approximations,
the full-k-dependence numerical sum over Matsubara frequencies and thek-averaged method,
are compared. In the upper graph the imaginary part ofχ is shown and in the lower graph the
real part is shown.

We comparedk-averaged susceptibilities for three Matsubara frequencies,�n ∈
{0, 2π i/β, 4π i/β}. The results in figure 6 are obtained with thek-averaged method—
note that the analyticity ofχ(z) allows us to evaluate also the results for thek-averaged
method for imaginary frequencies. The curves in figure 6 are obtained by calculating all
quantities by summing over (intermediate) Matsubara frequencies and by considering the
full k-dispersion throughout the entire self-consistency calculation; then, thek-averaging is
done at the very end of the calculation, after self-consistency had been established. The
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temperature dependence of these susceptibility quantities shows an excellent agreement
for these two completely different calculation methods. Thus, the validity of both thek-
average method, and of the approximation discussed in equation (16), is demonstrated, and
our method successfully reproduces the fully self-consistent calculation even in 1D, where
the fluctuations in equation (16) are expected to be at their largest.
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Figure 7. The k-averaged imaginary part of Im(6(ω − µ)) for a 1D system is plotted. In the
upper graph thek-averaged method is used whereas in the lower graph a numerical summation
over Matsubara frequencies (150 points) and 60k-points is performed with ak-average applied
at the very end of the calculation. In the latter case, Padé approximants were used to obtain
real-axis results. The difference atkBT = 0.35 is due to the failure of the Padé approximant at
sparse Matsubara frequencies. The minimum of Im(6(ω−µ)) is clearly resolved in both cases
for low temperatures.

To give a critique of the predictions for dynamical quantities produced by thek-averaged
method, in figure 7 we compare, for two different temperatures, the imaginary parts of the
k-averaged self-energy obtained (in figure 7 (upper graph)) by using thek-averaged method,
and (in figure 7 (lower graph)) by applying Padé approximants, as explained in reference
[25], for Matsubara frequencies where the fullk-dependence has been considered. In a
similar fashion we compare in figure 8 the results for the one-particle density of states.
Again, thek-averaging for the Matsubara frequency method was done at the end of the fully
self-consistent calculation, while thek-averaged method usesk-averaged quantities only
throughout its approach to self-consistency. In both of these figures we find good agreement
between the two methods, showing that the more conventional Matsubara frequency method
results are reproduced by ourk-averaged approach to the pair susceptibility.

Encouraged by these successes of ourk-averaged method in 1D, below we consider
the system of greater interest, two dimensions. Of course, although the above results are
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Figure 8. The 1D density of states for the two different approximations is plotted for the same
temperatures as in figure 7. Note the local maximum at the chemical potential.

encouraging, we cannot claim that our method can examine all of the features of this rich
system. For example, some features, like the eta mode discussed by Zhang and co-workers
[26], or any otherk-specific excitation, are masked by ourk-averaging.

4. Results

In this section we discuss our numerical results obtained using the method described above.
We focus on a quasi-2D system by starting thek-averaged calculation with aG0(ω) that
corresponds to a constant density of states. The band fillings are chosen to be below half-
filling (n = 0.5 is half-filling), and therefore the absence of the van Hove singularity in the
middle of our ‘band’ is unimportant. We choose constant particle numbers (n = 0.1 and
n = 0.3) and calculate the chemical potentials as a function of the temperature.

4.1. The single-particle density of states—no pseudo-gap

Of prime interest in our study is the single-particle density of states, since the presence of
a pseudo-gap should be apparent in this quantity [24]. Fortunately, this is ak-averaged
quantity, and so it follows immediately from the imaginary part of the self-consistent (k-
averaged) single-particle Green’s function.

Our results forn = 0.1 as a function of temperature (and which implicitly include the
temperature-dependent chemical potential) are shown in figure 9. For comparison, we also
show the NSCC result for one temperature. To aid in the understanding of these results, we



A theory of the attractive Hubbard model in 2D 6945

kBT = 0.07

kBT = 0.2

kBT = 0.5

kBT = 0.2

NSCC

! � �

�
W

2

�

I
m
(
G
)

� 2 W
�

−3.0 0.0 3.0
0.0

0.5

1.0

1.5

Figure 9. The resulting self-consistent density of states for the quasi-two-dimensional system
with n = 0.1 and |U | = 2 for four different temperatures is shown. Note that the density of
states develops a maximum at the chemical potential when the temperature is decreased. For
comparison we have shown the density of states from the NSCC approximation forkBT = 0.2.
All energies are given in units ofW/2.

show the behaviour of the chemical potential as a function of temperature in figure 10—this
latter quantity will be discussed in considerable detail in the next subsection of the paper.

The NSCC result (which is very similar to the NSCNC result) atkBT = 0.2 shows that
the entire single-particle band is above the chemical potential (seen from roughlykBT = 0.5
to kBT = 2.5), and that below the chemical potential one finds the effects of the two-particle
bound state. We stress that the ‘gap’ between these two features is entirely different from
that found by Jankoet al (which they proposed to be a pseudo-gap) [27], in that they study a
3D system which, more importantly, has the chemical potential inside the one-particle band.
As is seen in our figure 10, for our NSCC calculation atn = 0.1 the chemical potential
is below the continuum arising from the single-particle states. Thus, the gap feature seen
in our figure nearω = µ is not related to a pseudo-gap. Instead, we believe that this
behaviour is related to the analytical work for the NSC theory described in reference [14].
Furthermore, the NSC theory provides us with an energy scale for the binding energy of
the pairs, and is given by the distance of theT = 0 chemical potential from the lower band
edge. This is, in our example(U = W), the density-independent number 0.31 (in units
of W/2) or 0.19 [W/2] for the calculations taking into account the fullk-dispersion or the
k-average, respectively.

Most importantly, the fully SCC result shows no evidence of a pseudo-gap. In fact,
we see the opposite of a pseudo-gap, wherein there is an increase in spectral weight at
the chemical potential. Unfortunately, it is somewhat difficult to say what happens to the
chemical potential for this density—so, we now consider higher densities to clarify this
situation.
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Figure 10. A flow diagram of the quasi-2D system (n = 0.1) for the chemical potentialµ as a
function of the temperature. The different levels of approximation are shown. For comparison,
the line for the non-interacting system(U = 0) is given, and the Thouless line which determines
the NSCTc is shown. The region of the one-particle continuum of a non-interacting reference
system is shown, beginning atµ = −1 on theµ-axis. The parameters were chosen to be|U | = 2
andn = 0.1 and all energies are given in units of half the bandwidth,W/2.

Figures 11 and 12 show the analogous results forn = 0.3. Here, the NSCC result is
similar to the above NSCC data, only now the feature from the two-particle bound state
is much more clearly resolved. Also, the physics in the SCC result is more easily seen.
These figures show quite clearly that (i) the chemical potential is in the band (for the SCC
formulation, this is true for temperatures below about 0.9), and (ii) no evidence of a pseudo-
gap is found. Instead, as above, there is an enhancement of the spectral weight near the
chemical potential. This finding is in disagreement with other SCC results for a d-wave
pairing potential [28].

We note that recent Monte Carlo results in thed −→∞ limit, which were obtained at
n = 0.3 and for the same intermediate coupling that we used, also did not find a pseudo-
gap [29].

4.2. Suppression of superconductivity in 2D

As mentioned in the introduction, a simple explanation of the (potential) suppression of
superconductivity in 2D was given in reference [8]. The physics can be related to the
behaviour of the chemical potential—namely, when an attractive potential of any strength
is present in 2D (or 1D), a bound state is formed, and this state ‘attracts’ the chemical
potential to it. Thus, the chemical potential is found below the bottom of the band, and no
Fermi surface is left. No Fermi surface means that there is no Cooper pairing.
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Figure 11. The same plot as in figure 9, but for a density ofn = 0.3.
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Figure 12. As figure 10, but for a density ofn = 0.3.

We note that the formulation of reference [8] is NSCNC. Although Serene [18] has
claimed that the physics of reference [8] is destroyed when one uses a conserving theory,
we disagree with this. In fact, for lattice systems, we have been able to formally show that
the physics of reference [8] survives, and in fact becomes more transparent, in a conserving
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theory. We will discuss these results in a future publication [30].
In contrast to this, our data for the chemical potential in a SCC theory show that the

physics of reference [8] does not survive the inclusion of pair–pair interactions in a fully
self-consistent theory. This is easiest to see in figure 12, wherein the low-temperature
extrapolation of the chemical potential is into the (interacting) single-particle band. Put
another way, there is still a Fermi surface at low temperatures in a SCC theory. (That
is not necessarily to say that this is a Fermi liquid—see the next subsection.) We note
that the reappearance of the Fermi surface was also seen in the SCC work of Fresard and
co-workers [11].

To better understand this, we now consider the behaviour of this bound state via the SCC
vertex function. Examining the vertex function0(�) probably best explains the difference
in physics between the NSCC and the SCC formulations. For the NSCC calculation, the
infinite-lifetime bound state is seen as a (numerically broadened) delta function in Im(0(�))

(see the inset in figure 13). However, Im(0(�)) for the SCC calculation does not show
a delta peak below the continuum—instead, at the chemical potential, with decreasing
temperature an enhancement nearµ can be seen. Note that in figure 13 for� below
the chemical potential there is a non-vanishing imaginary part of0(�) that is negative.
Therefore, the enhancement of Im(0(�)) can also be interpreted as a lifetime-broadened
remnant of a two-particle bound state. So, we stress again that for the SCC calculation
there is no infinite-lifetime bound state, opposite to the case for the NSCC calculation.
When treating the system self-consistently, pair–pair interactions are included which lead
to a finite lifetime of the pairs, and therefore the condensation of the fermions into a bound
state is hindered.
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Figure 13. A plot of Im(0(� − 2µ)) for the quasi-2D system. The inset shows the result for
kT = 0.2 from the NSCC calculation with a delta peak indicating the infinite-lifetime bound
state. The SCC result is plotted for three temperatures (0.5, 0.2, 0.07) and shows no infinite-
lifetime bound state. All of the energies are again in units ofW/2 with |U | = 2 andn = 0.1.
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4.3. The quasi-particle lifetime at the chemical potential

The above results showed that in a SCC theory the Fermi surface survives at low temp-
eratures. The natural question is then: is this a Fermi liquid?
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Figure 14. The imaginary part of the self-energy at the chemical potential as a function of
temperature for the model parameters|U | = 2 andn = 0.1. The straight line is a guide to the
eye.

To help us answer this question, we consider the (real-) frequency dependence of the
imaginary part of the self-energy6. In a SCC theory it exhibits a minimum at the chemical
potential, and this qualitative behaviour is indeed similar to that of a Fermi liquid. However,
in figure 14 we have plotted this quantity, which is related to the inverse quasi-particle
lifetime at the chemical potential, as a function of temperature. The calculated value seems
to indicate a linear variation with temperature (the extrapolated value is simply a function
of our numerical broadening, and in this calculation has no physical significance).

To understand this we note that standard arguments, based on, for example, Fermi’s
golden rule, predict theT 2-behaviour of a Fermi liquid. However, we argue that if the
dominant scattering is between lifetime-broadened two-particle bound states and quasi-
particles, then such a linearT -behaviour is indeed expected. Crucial to this argument
is the approximate temperature independence of the lifetime of the two-particle bound
state, something that our numerics makes clear. Furthermore, consequences of this simple
phenomenology are currently being explored.

5. Conclusions

We have examined the attractive Hubbard model in 2D using ak-averaged method.
Furthermore, we have studied the dynamical properties of this model using real-time-axis
thermal Green’s functions—this allows for an accurate determination of quantities like the
single-particle density of states, and the energy dependencies of the self-energy and vertex
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function. We have compared our approach to the more familiar Matsubara frequency method
in 1D, and have found little difference between the results obtained by the two methods.
However, thek-averaged method allows us to reach much lower temperatures without
enormous computational efforts.

We have included pair–pair interactions, as formulated by Haussmann, in a SCC theory.
Our results for such a theory lead us to believe that the attractive Hubbard model in 2D, for
a correlation energy roughly equal to the bandwidth, does not have a pseudo-gap. Instead,
there is actually an enhancement of the spectral weight near the Fermi surface. The nature
of the ground-state properties is uncertain, since we find a linear temperature dependence
of the quasi-particle scattering rate over a wide temperature range. The reappearance of the
Fermi surface in a SCC theory in 2D was noted previously by Fresard and co-workers [11],
but the linearT -behaviour is new, and deserves further investigation.
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